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Abstract— The main objective of this work is the 

development of an advanced control scheme for the Fluid 
Catalytic Cracking (FCC) Pilot Plant (PP) operated in the 
Chemical Process Engineering Research Institute (CPERI). 
This pilot plant is used for catalyst benchmarking, a very 
demanding procedure, that requires unit operation within a 
predefined span in order to match the industrial standards. For 
the tight, robust and efficient control of the FCC pilot plant a 
non-linear Model Predictive Control (MPC) strategy is 
implemented, along with an Extended Kalman Filter (EKF) for 
state and parameter estimation. 

 

I. INTRODUCTION 
HE development and application of a reliable control 
scheme for the fluid catalytic cracking unit is one of the 

most challenging problems in chemical process industry. 
The application of a robust MPC strategy on the FCC unit 
appears as a much promising solution for the process 
optimization and profit maximization. However, the cost of 
developing a reasonably accurate first-principles model for 
the FCC process is usually prohibitive, as a result of the 
strong interactions and the high degree of uncertainty in the 

integrated riser-regenerator loop. The stochastic nature of 
the air distribution in the regenerator, the moderately defined 
flow regime of the gas-catalyst mixture in the riser, and the 
catalyst circulation throughout the unit form a complex, 
cyclic and constrained system. Furthermore, operational 
constraints set for safe and stable operation, product 
specifications and environmental restrictions formulate a 
complex control problem. 
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The problem in the pilot scale process is even more 
complicated. The operation of the pilot plant must follow a 
predefined profile, obeying the refinery standards. The 
catalyst benchmarking procedure requires the catalysts to be 
evaluated at constant conversion levels and riser reactor 
temperatures. Therefore, control of this pilot scale process 
faces several challenges: 

--Riser temperature, controlled by the catalyst circulation 
rate, during closed loop PP operation, should satisfy a 
specified set-point that guarantees for constant selectivity in 
the product slate. 

--Conversion of the gas-oil feed should meet a determined 
value for easy comparison (testing) of the variation of the 
examined catalysts activity and selectivity. 

--Excess gas from the regenerator is subject to 
environmental constraints regarding the CO, SO2, NOx 
emissions in commercial units and this pattern should be 
followed, or even examined, in the PP operation also. 

The implementation of an MPC strategy appears, 
therefore, very promising, since the conventional control 
schemes, based on PID controllers, can not guarantee 
stability and accurate targeting of specified operating 
conditions, resulting to dubious productivity. 

In previous work [1-3] a dynamic mathematical model has 
been developed and verified on the basis of steady state and 
dynamic experimental data of the FCC pilot plant of CPERI. 
The simulator predicts conversion, coke yield, and heat 
consumed by feed vaporization and catalytic reactions in the 
pilot riser reactor through the use of semi-empirical models 
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developed in CPERI [1, 2]. The pilot regenerator reactor 
model uses the two-phase theory with a dilute phase model 
to account for post-combustion reactions [4, 5]. The 
effective manipulated variables in the PP are the catalyst 
circulation rate, feed preheat temperature, combustion air 
flow rate (and temperature), and gas-oil feed flow rate 
(though in an industrial unit it is driven by the need for 
target production), whereas the gas-oil composition and the 
catalyst quality are considered as disturbances. The interest 
is in controlling the regenerator and riser temperatures, 
conversion (feed basis), and coke yield (feed basis). 
However, the variables that can be measured online in the 
PP are the riser and regenerator temperature, the regenerator 
flue gas, the system pressure and pressure drops. Conversion 
and coke yield are therefore inferred by the available 
process measurements and the modeling relations. Thus, it is 
possible to implement a feedback control scheme that 
performs optimization through a cost function around the 
desired operational point. In this scheme constraints on the 
emissions of the regenerator (CO, NOx, and SO2) are easily 
implemented. As the PP regenerator operates under full 
combustion mode the goal of minimum to zero CO 
emissions is easily achieved, yet for the other two goals the 
effect of the optimal operating point of the PP should be 
explored. 

The development of the control structure underwent two 
main stages, the simulation study and the implementation to 
the real process level. The first was done by creating a 
framework with two instances of the model: an original 
entity of the simulator, as the “Virtual Process” (VP) and 
another one in the MPC scheme. A disturbance, such as a 
change in catalyst quality, was implemented in the VP to test 
the efficiency and robustness of the MPC. Having chosen 
and verified the most functional control structure followed 
by a suitable tuning (e.g., objective function weighting 
factors) the study resulted to a reliable MPC scheme to be 
applied on the actual pilot plant. Control parameter updates 
were obtained using the process measurements and the 
dynamic model. The optimal piecewise constant future 
control actions were calculated through dynamic 
programming over desired prediction and control horizons. 
The sensitivity of the performance of the online optimal 
non-linear MPC with respect to the duration of the control 
intervals and the prediction and control horizons was 
examined in conjunction to the effort for the numerical 
solution.  

I. FCC PILOT PLANT CONTROL OBJECTIVES 

A. Pilot Plant Description 
The FCC pilot plant of CPERI (Fig. 1) operates in a fully-

circulating mode and consists of a riser reactor, a fluidized 
bed regenerator, a stripper and a liftline. The riser reactor 
operates in pseudo-isothermal plug flow conditions, whereas 
the regenerator operates in full combustion mode under 

pseudo-adiabatic conditions. Two slide valves, one at the 
exit of the regenerator standpipe and one at the exit of the 
stripper standpipe regulate the catalyst circulation 
throughout the unit. The regenerator standpipe slide valve 
manipulates the catalyst circulation to control the riser 
temperature, whereas the stripper slide valve operates for 
constant stripper level (i.e. stripping volume). An on-line 
oxygen analyzer monitors the excess of oxygen and controls 
the combustion air flow rate. The process pressure, the 
control valves and the power supply to electrical heaters are 
controlled by numerous algorithmic PID controllers. 

The main task of the PP is catalyst benchmarking. The 
goal is to maintain the operation within a narrow predefined 
window in order to achieve standard feed conversion. This 
practice is especially adopted for gathering comparable 
results in terms of catalyst selectivity, so any experiment not 
fulfilling that requirement is useless. In this way, the overall 
control objective translates to the elimination of repetitive 
and useless experiments. 

 
Fig. 1.  Schematic diagram of the FCC pilot plant of CPERI 

B. Pilot Process Control Objectives 
The approach presented in this project will focus on 

improving the control performance of the unit through 
manipulation of the riser. That is dictated by the operational 
conditions of the CPERI pilot regenerator, which allows a 
small margin for optimization, since the primary target for 
minimal polluting emissions is, in any case, achieved 
through full combustion of the coke under excess air 
conditions. So, as a first step, the optimal control case will 
be explored without imposing additional constraints 
(minimal CO emissions or specified regenerator 
temperature) considering the regenerator operation. Still, the 
regenerator operation significantly interacts with the riser. 
The regenerator defines the dynamics of the unit. MPC of 
the riser cannot be achieved via a stand-alone riser model. It 



 
 

 

requires an integrated accurate model of the riser-
regenerator system, mainly, because both vessels interact 
with each other through stream recycling. As shown in 
Fig. 1, any variation in the coke/catalyst output stream of the 
riser is eventually led to the regenerator. The regenerator 
operation in turn, is notably affected by the transition of the 
input, resulting in dynamically changing operating 
conditions and output composition, which are fed back to 
the riser as a recycle stream affecting it again. Therefore, 
modeling and monitoring the regenerator is essential for 
controlling the riser. The effect of the model accuracy on the 
controlling efficiency has been extensively discussed in 
Model Predictive Control theory [6]. In general, the process 
model should be accurate enough to maintain good 
prediction properties over the range of operating conditions 
of interest. The model used for this project has been 
developed and presented in detail in previous 
publications [1-3], where its ability to simulate accurately 
the dynamics of the PP has been demonstrated. 

A robust control system prerequisites a suitable choice of 
controlled (output) and manipulated (input) variables. The 
manipulated variables should be the ones that highly affect 
the unit outputs, while allowing operational flexibility and 
successfully alleviating the disturbances effects. The 
controlled variables should be chosen in correspondence to 
the control objectives (yield maximization, temperature 
stability etc.). At this point, it is useful to present a brief 
analysis of the system. The riser sub-section is described by 
5 basic equations: 
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Practically, the system of (1) - (5) concisely describes the 
mass and energy balances of the riser section [3]. The 
operational variables (unknowns) in this system are 14: the 
conversion (yx), the coke yield (yc), the feed rate ( FW ) the 
inert rate ( ), the catalyst circulation rate ( ), the 
pressure ( ) and the temperature (

NW CW
RSP RXT ) of the reactor, the 

feed preheat temperature ( PRT ), the temperature at the 
regenerator dense section ( ( )

:RG
t

DT ), the feed vaporization 
enthalpy ( vapHΔ ), the energy consumed by the cracking 
reactions ( ), the properties or quality indices of the 
feed (p(F)), the inert (p(N)) and the catalyst (p(C)). The 
respective schematic problem formulation for the 
regenerator (neglecting the dynamic clauses of the stripper) 
is as follows: 
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The system of (6) - (9) briefly describes the regenerators 
extended system of equations [3]. The variables appearing 
here are 8: the air (for combustion) flow rate at the bottom 
of the regenerator ( ( )0

:RG
Dl

gW = ), the composition of the gas 
exiting from the regenerator top ( ( )1, 

:RG
Fl t

gc = ), the composition 
of coke on the regenerated catalyst ( ( )

:RG
t

cc ), the average 
regenerator pressure ( ), the inlet temperature of the 
combustion air (

RGP
( )0
:RG

Dl
gT = ), the heat of the exothermic reactions 

( combHΔ ) the combustion air composition ( ( )0
:RG
Dl

gc = ) and its 
properties (p(G)). The system in its general form counts 22 
variables and 9 equations, therefore 13 degrees of freedom. 
It is noted that the analysis presented, despite the 
generalities, requires full comprehension of the FCC unit 
operation and it can describe any pilot or industrial unit. 

The 13 independent variables of the FCC operation are: 
the feed rate, the inert rate, the riser pressure, the catalyst 
circulation rate, the feed preheat temperature and the 
qualities of the feed, inert and catalyst, for the riser section. 
For the regenerator they are the air rate at the bottom, the 
pressure and the inlet air temperature, composition and 
properties. In a typical industrial unit: the feed rate is set to 
meet the unit maximum capacity, the inert rate and quality 
follow a predefined pattern in order to retain constant partial 
pressure of the hydrocarbons in the riser, the temperature, 
the composition and the properties of the combustion air are 
constant. These bounds are also followed in PP operation, 
although not always for the same reasons. More specifically 
in the pilot plant: the combustion air rate of the pilot 
regenerator is controlled separately in order to satisfy the 
low emissions criterion. Also, the feed and catalyst qualities 
are considered as unknown disturbances. The reason for the 
latter is their stochastic nature in industry, meaning that the 
complete feed quality description is usually unavailable, 
because it is a mixture of various refinery streams and the 
catalyst quality is changing perpetually due to the 
continuous addition of a small amount of fresh catalyst. 
Furthermore, catalyst or/and feed qualities are the usual 
unknowns during PP benchmarking experiments. Provided 
that the riser and the regenerator pressure are controlled by 
separate subsystems, the only independent variables suitable 
for manipulation in the PP, for the purpose of benchmarking 
experiments, are the catalyst circulation rate and the feed 
preheat temperature. 



 
 

 

The main objective in both the pilot plant and the industry 
FCC process is the optimization of the riser conversion on 
feed basis, while maintaining the riser temperature around a 
set point, which guarantees a constant effect of operating 
conditions on product selectivity. The riser conversion, the 
riser temperature, the feed preheat temperature and the 
catalyst circulation rate are interrelated variables and 
comprise a system of equations ((1) - (5)), which under 
stable operation is uniquely defined (within the narrow 
bounds of the PP operation). The manipulated catalyst 
circulation rate obviously affects the conversion, but it also 
affects the heat build-up, consumption and loss of the 
system, having an impact on the riser temperature, as well. 
Riser temperature and feed conversion are correlated, 
meaning that for a given value of the riser temperature, 
conversion is uniquely defined and vice-versa (given that 
every other input variable of the riser is constant). The last 
fact provides two alternatives for the control problem: If 
riser conversion measurements are available then it can be 
directly controlled by manipulating the catalyst rate and feed 
preheat. In the most usual case that the riser temperature 
measurement is accessible and the online conversion 
measurement is unavailable, then conversion control can be 
performed using an inferred value calculated by (1).  

On the basis of the above analysis, an MPC strategy can 
be implemented for the control of feed conversion and riser 
temperature through the proper manipulation of the catalyst 
circulation rate and the feed preheat temperature. This 
strategy should lead to the direct targeting of the desired 
conversion and reduce the number of required experiments 
with the same catalyst in catalyst evaluation tests. 

II. MODEL PREDICTIVE CONTROL 

A. MPC Principles 
Model predictive control is based on the fact that past and 

present control actions affect the future response of the 
process [6]. Having selected a time horizon extending into 
the future, the prediction of the process model is calculated, 
based on past control actions. The response of the model can 
then be compared to a desired trajectory if no further control 
actions are to be taken. The variation between the desired 
control trajectory and the predictions can therefore be 
minimized, through the calculation of a specified number of 
future control actions (Fig. 2). The control horizon (i.e. the 
period for which future control actions are calculated) may 
be selected smaller or equal to the prediction time horizon, 
during which the comparison of the desired to the predicted 
trajectories is performed. At each time interval the first 
optimal control action in the calculated sequence is 
implemented and a new measurement of the actual response 
of the process is obtained. The model-based predictive 
control principles are presented in Fig. 2. 

The deviation of the model prediction from the actual 
response of the process is recorded and considered as the 

error of the process model, as shown in the block diagram of 
the MPC system (Fig. 3). The calculated error defines a bias 
term that is used to correct the future predictions of the 

model. The bias model term encompasses contributions from 
model mismatch, unmeasured disturbances, and 
measurement error. It is assumed that this error will be 
persistent for the entire prediction horizon. Thus, error 
feedback is maintained in the control system allowing 
integral action and elimination of steady-state offset. The 
block diagram describing the system is presented in Fig. 3.  

A parameter and state estimator can be added to enhance 
the model accuracy and the overall MPC robustness. For 
non-linear systems robust state and parameter estimation can 
be achieved through the use of an Extended Kalman Filter 
(EKF). The correction of the model parameters and states 
leads to the gradual minimization of the model - process 
mismatch. 

The mathematical representation of the model-based 
predictive control algorithm is given by (10),where where x, 
u, y denote the vectors of the state, manipulated (i.e. control 
actions) and output variables of the system, respectively. 
Symbols f and g denote the sets of differential and algebraic 
model equations. Vector ŷ  denotes the predictions for the 
system output variables that include the contribution of the 
bias term on the model predictions. Vector ysp denotes the 
desired response (set point) of the system output variables. 

 
Fig. 2.  The principles in model-predictive control. 
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Fig. 3.  Control block diagram of the process. 
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Vector ek denotes the difference between the measured 
output variables ymeas and the predicted values ypred at time 
instant k. The current formulation assumes that the error on 
the predictions will persist and remain constant for the entire 
length of the prediction time horizon. TP and TC denote the 
prediction and control horizons, reached through NP and NC 
time intervals, respectively.  

The tuning parameters of the controller are the weights 
wy, wu and wΔu, and the length of the prediction and control 
horizons. A long prediction horizon allows the control 
scheme to compensate for slower dynamics that affect the 
response of the system further into time. However, large 
prediction horizons make the control scheme more 
susceptible to unmeasured disturbances. On the other hand, 
a short control horizon may lead to aggressive control 
actions, as the controller attempts to correct the trajectory 
with a few moves through short time period. 

The formulation of the control problem results in a 
dynamic program. The objective function contains the 
integral of the squared error of the controlled variables from 
the desired trajectory, a move suppression factor on the 
manipulated variables that penalizes high values in the rate 
of change for the control actions and a steady state 
optimality factor for restricting the range of the possible 
solution within the operational limits. The behavior of the 
manipulated variables is considered as a sequence of 
piecewise values that minimize the objective function. The 
prediction and control horizons are divided in equally 
spaced time intervals, during which the manipulated 
variables remain constant. Upper and lower bounds apply 
for the manipulated variables along the control horizon, as 
required by the physical limitation of the system (e.g., 

cannot exceed its value for the respective maximum 
available valve opening or the minimum flow necessary for 
safe operation). The solution method involves successive 
iterations between the optimizer, that evaluates the optimal 
values of the manipulated variables, and the integrator, that 
calculates the dynamic response of the system and the 
sensitivity of the control actions to the control objectives. 
Variable bounds and path constraints are considered for 

violation along the optimal control path. 

CW

B. Extended Kalman Filter 
The model states, x, and parameters, θ, are updated every 

time a new set of measurements becomes available. 
Therefore, an Extended Kalman Filter [7] (EKF) is utilized 
due to the nonlinear nature of the process model. The 
dynamic process model is linearized and brought to its 
equivalent state space representation. The deterministic 
process states, xd, as defined by the process balance 
equations are augmented with stochastic states, xs, that 
account for the model parameters and process disturbances. 
These additional states may vary with time in some 
stochastic manner. Since the functional relationship, fs, for 
the stochastic state variables is rarely known, the most 
common assumption, provided that xs does not change 
considerably with time, is to be set equal to a zero vector. 
Thus, the dynamic behavior of the stochastic state variables 
is usually modeled as a random walk process. The inclusion 
of meaningful and consistent non-stationary stochastic state 
variables, s

kx , into the state/parameter estimator can 
eliminate the bias between the mathematical model and the 
actual process and provide good and unbiased state 
estimates [8-11]. 

Hence, the augmented state space model representation is 
as follows: 

1 1k k k
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respectively. Process and measurement noise are assumed to 
behave as zero mean Gaussian shocks with covariance 
matrices Q and R, respectively. Matrix Φ

kv
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Jacobian of the system with respect to the states and is given 

by: k k
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When a new observation becomes available, the states are 
updated according to the following equation: 

( ){ }1/ 1 1/ 1 1/k k k k k k k k+ + + + += + − Ηx x K y x  (12) 
Kk is the Kalman gain at time tk computed recursively from 
the resulting Riccati equations. For increased accuracy of the 
EKF the process model is linearized in each time interval. 

III. RESULTS 

A. Process Model 
The simulator of the PP includes three main sections: a 

pseudo-steady state model of the riser reactor, a dynamic 
model of the regenerator and a set of dynamic and pseudo-
steady state models of the stripper, the regenerator 



 
 

 

standpipe, the liftline and the slide valves. For the specific 
case of the CPERI pilot plant, the dynamic effects of the 
riser, the cyclones, the liftline and the regenerator standpipe 
were neglected, as their operation has a significantly lower 
impact on the process dynamics, compared to the two large 
vessels of the plant, the stripper and the regenerator. The 
residence times of these two units are so much longer that 
the dynamic effect of the rest is suitably neglected. In both 
the pilot plant and a typical commercial unit, it is the 
behavior of the regenerator that dominates the dynamic and 
the steady state behavior of the integrated unit [12].  

The pseudo-steady state and dynamic sub-models that 
constitute the dynamic simulator of the PP have been 
presented in the literature [1-4] and are not the subject of 
this paper. However, it is needed to clarify that, as the 
catalyst effect on the system can not be modeled, it was 
represented by indices [2]. That is, the effects of catalyst 
type and quality were expressed through an array of indices 
(one for each product) that was assigned to each catalyst to 
express its activity and selectivity. These indices are the 
unknowns or “constant disturbances” in the PP control 
problem formulation. 

The dynamic material and energy balance equations form 
a system of Differential-Algebraic Equations (DAE) that is 
solved using the equation oriented environment of 
gPROMS [13]. The dynamic model, the MPC algorithm and 
the EKF module were merged in a compound module, 
formed by a gPROMS entity and a MATLAB module 
communicating through Excel files that serve as the bridge 
between the two programs. 

B. Simulation Study 
The model predictive controller was initially tested on a 

simulated case study. The MPC framework includes two 
instances of the model that were concurrently executed. The 
first instance, which represented the “Virtual Process” or 
“Virtual Plant” (VP), was depicted by a flawless version of 
the model. The second introduced a case study including 
significant amount of mismatch in the reaction kinetics in 
order to simulate a fictitious simulated process and was used 
to represent the “Simulator”. Hence, in the following the 
expression “Virtual Process” or VP denotes the process, for 
which the flawless version of the model was used, and the 
expression “Simulator” denotes the model with the different 
kinetic constants. This case study actually included what is 
expected to be the control problem in the real pilot process 
level. More specifically, different indices that describe the 
effect of catalyst activity and selectivity on feed conversion 
and coke yield have been used in the VP model and the 
Simulator model. The indices used were those of real 
catalysts, different for each case (VP and Simulator) taken 
from the PP experimental database. With this structure the 
equivalent of a typical catalyst benchmarking experiment 
was fully reconstructed. The intervals for the control actions 
(i.e. manipulation of variables) were chosen equal to 2 

minutes. The Simulator was updated using infrequent rate 
process measurement of the reactor temperature and the 
inferred conversion of the VP. The optimal piecewise 
constant future control actions were calculated through 
dynamic programming over the desired prediction and 
control horizons.  

C. Validation of the MPC scheme 
The different catalyst activity and selectivity between the 

Virtual Plant and the Simulator act as a constant disturbance 
in the process cycle. The goal for the MPC was to move the 
plant operation through a sequence of corrective control 
actions to the desired level of feed conversion and riser 
temperature. The following performance index was used: 
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where  denotes the predictions of the respective variables 
i that incorporate the model prognosis and the error 
correction (i.e. difference between the measurement and the 
prediction at the previous time period) and 

ˆiy

sp
iy  the set points 

of the controlled variables. The second term of (13) denotes 
the move suppression factor, which penalizes abrupt 
changes in the manipulated variables. The last term denotes 
the steady state optimality factor and it aims to drive the 
MPC actions towards a potentially desired solution, dictated 
by the plant optimization decision level. Weights w express 
the relative significance of each term in the performance 
index. 

The prediction (NP) and control (NC) horizons were 
selected equal to 20 and 10 minutes, respectively. The length 
of the prediction horizon is chosen close to the time 
necessary for the PP to reach the new steady state after 
imposing a typical change. The length of the control horizon 
was mainly driven by the computational time for solution 
that should be lower than the unit sampling interval. The 
control profile was considered as piecewise constant with 
the manipulated variables changing every 2 minutes. The 
length between two consecutive control actions  (ΔtC) was 
chosen on the basis of the frequency of the available 
measurements. A new optimal sequence of 5 control actions 
was calculated every 2 minutes. This means that every 2 
minutes a new control action was implemented and a new 
measurement was recorded. The time between two 
successive measurements was determined considering also 
the limitation imposed from the computation time required 
for the solution of the dynamic optimization and simulation 
of the process model. At each time interval the dynamic 
non-linear model was linearized and the EKF was applied. 
In the linearization the catalyst indices were considered as 
manipulated variables and then added to the linearized state 
vector.  



 
 

 

The control problem, as posed above, was tested on a 
simulation environment, in which different catalyst indices 
(p(C)) were used for the Virtual Process and the Simulator. 
The indices of a catalyst with higher activity and selectivity 
and much higher coke selectivity were used in the VP. 
Moreover, the non-catalytic coke yield, which is a result of 
the feedstock quality and can be predicted by the model, was 
intentionally considered different between the PP and the 
Simulator. In the VP a higher non-catalytic coke yield was 

used. This was done to examine the performance of the 
MPC scheme to a disturbance that was not filtered by the 
EKF. Finally, noise was added to the VP measurements to 

test the EKF efficiency. These significant differences caused 
an increase in the feed conversion of the VP and lower riser 
temperature, compared to those predicted by the Simulator. 
The task for the MPC algorithm was to lead the VP to the 
desired conversion ( ) and riser temperature 
( ) under the influence of the disturbances 
introduced. The bias term (e

65 %wtsp
xy =

526.7 Csp
RXT = °

k of (10)) (also referred to as 
constant additive disturbance [14]) and the parameter 
estimation through the EKF were used for improving the 
Simulator accuracy.  

 
Fig.5.  MPC actions and responses with and without the EKF. 
 

As shown in Fig. 5, the VP initiated at 2% higher feed 
conversion than the desired one and riser temperature 2°C 
above its set point. The first action of the MPC was to lower 
the catalyst circulation rate and increase the feed preheat 
temperature, as dictated by the solution of the dynamic 
problem. The lower catalyst circulation rate led to lower 
coke yield (on feed basis), but higher overall ratio of coke 
rate over catalyst rate entering the regenerator. The latter 
resulted in increasing the regenerator temperature (Fig. 5(f)) 
and eventually the riser temperature (Fig. 5(d)). As the 
controlled variables are variables of the riser, which operates 
in pseudo-steady state, the MPC led the process very close 
to the desired set-points rapidly. Thereafter, using the 
information of the prediction horizon waited for the 
dynamics of the process (Fig. 6), while making small control 
actions to eliminate the VP - Simulator mismatch.  

The control loop was continued for a period of 40 min. In 
the final steady state both the feed conversion and the riser 
temperature criteria were fully satisfied. The results with the 
use of the EKF are also presented in Fig. 4. It is evident that 
the EKF was able to absorb the artificial noise introduced 
and to correct the model predictions, creating a smother 

 
Fig. 6.  PP dynamic responses to MPC actions with and without EKF. 
 



 
 

 

control actions profile. The steady state offset of the filtered 
model predictions is owed to the feed quality disturbance 
implemented, which was not filtered. Overall, the MPC 
structure presented promises the establishment of the desired 
steady state within 40 min, which is very important for the 
PP operation. 

IV. CONCLUSIONS 
An advanced model predictive control strategy that 

calculates the optimal sequence of manipulated variables 
over a specified control horizon has been implemented in a 
pilot - sized FCC unit used for experimental catalyst 
evaluation. The implementation of the MPC scheme in 
conjunction with an EKF showed extreme robustness to 
changes in the feed quality and the catalyst activity and 
selectivity. The application of the MPC-EKF scheme 
allowed for an accurate targeting of the desired feed 
conversion with poor knowledge of the catalyst properties 
and selectivity. In conclusion, the proposed control strategy 
succeeded to a more efficient control procedure that follows 
prescribed operating conditions. Thus, it leaded to the 
elimination of additional and repetitive experiments with the 
same catalyst, in catalyst evaluation tests, improving this 
way the overall productivity of the catalyst evaluation and 
decreasing the unit operating cost. 
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